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Abstract: Operons have not been studied extensively outside of Escherichia coli and Bacillus subtilis. To
predict operons in other prokaryotes, we combine comparative genomics predictions of conserved operons
with probabilistic models of distances between genes in the same operon. Unlike previous efforts, which
apply distance models from known E. coli operons to other organisms, we infer genome-specific distance
models from the comparative genomics predictions and their estimated error rates. We validate our pre-
dictions against known operons from FE. coli and B. subtilis and against microarray data for six diverse
prokaryotes, testing whether adjacent genes predicted to be in the same operon (or not) are coexpressed.
Genome-specific distance models for the archaeon Halobacterium sp. NRC-1 and for Helicobacter pylori
are significantly different from E. coli’s distance model, and we use microarray data to confirm these
differences. Furthermore, H. pylori has many operons, contrary to earlier reports, and Synechocystis sp.
PCC 6803 has significant numbers of operons despite its unusual distance distribution. Finally, genomes
with most of their genes on the leading strand of DNA replication have an even higher proportion of their
multiple-gene transcripts on the leading strand. We use this observation to estimate the number of operons

in strand-biased genomes and to improve our predictions significantly.

Availability: Operon predictions for 124 genomes, microarray similarity scores for six genomes, and

source code in perl and R are available at http://vimssftp.lbl.gov/UnsupervisedOperouns.



Introduction

Operons are the fundamental unit of transcriptional regulation in prokaryotes, but little is known about
operon structure outside of a few model organisms. Although over 100 complete prokaryotic genomes
have been sequenced, efforts to predict operons computationally have focused on Escherichia coli and
Bacillus subtilis. These methods rely on databases of experimentally identified transcripts for training
and for validation (1, 2, 3, 4, 5, 6). As databases of known operons are not available for other species,
unsupervised methods — methods that do not require large databases of known operons — are needed.

Two unsupervised methods have been proposed for predicting operons, based on (i) identifying operons
that are conserved in multiple species or (ii) identifying pairs of genes on the same strand that have short
non-coding regions between them. Genes that remain adjacent across long stretches of evolutionary time
are almost certain to be in the same operon, but only half of E. coli operons can be identified this way
(7). Genes that have short distances between them are usually in operons, and training data from known
E. coli transcripts has been used to compute the relative likelihood of each intergenic distance for pairs
that are within operons versus pairs that are at transcript boundaries. This probabilistic “distance model”
is 82% accurate in E.coli (1). The E. coli distance model can also be used to predict operons in other
organisms, but this ad hoc approach has been validated only in B. subtilis (8). As the distribution of
intergenic distances within conserved operons varies across species (9), E. coli distance models will not be
effective in many organisms.

To address the limited sensitivity of comparative approaches and the variation in distance distributions
across species, we present an unsupervised learning approach to operon prediction that combines compara-
tive genomics with a genome-specific distance model. We do not attempt to predict alternative transcripts
due to internal promoters, terminator read-through, etc., as this remains a challenging problem even in F.
coli (4), where transcriptional control features are relatively well characterized. Instead, we predict whether
adjacent pairs of genes on the same strand can be transcribed together or not, and we use “transcription
unit” and “operon” interchangeably.

Validation of operon predictions has been limited to E. coli and B. subtilis, again relying on databases
of experimentally characterized transcripts. We test our unsupervised predictions against both microarray
experiments and known operons in E. coli and B. subtilis, and against microarray data alone for four

diverse prokaryotes where few operons have been characterized (Helicobacter pylori, Chlamydia trachomatis,



Synechocystis sp. PCC 6803, and Halobacterium sp. NRC-1).

Methods

Data sources

Sequences. We downloaded the complete annotated genomes of 124 prokaryotes from NCBI, TIGR, and
DOE’s JGI (Table S3), and excluded plasmids from our analyses.

Known operons. We obtained transcripts for E. coli K12 from EcoCyc v7.5 (10) and for B. subtilis
from http://cib.nig.ac.jp/dda/backup/taitoh/bsub.operon.html (11). We identified non-operon pairs as
the same-strand pairs that are at the boundary of known transcripts, but are not within any known
transcript (1). This gave 717 operon and 512 non-operon pairs for E. coli and 309 and 124, respectively,
for B. subtilis.

Microarrays. We obtained data for E. coli, B. subtilis, and H. pylori from the Stanford Microarray
Database (74, 78, and 31 arrays, respectively), for Synechocystis from the Kyoto Encyclopedia of Genes
and Genomes (49 arrays), for C. trachomatis from T. Nicholson and R. Stephens (12 experiments times
2-3 replicates), and for Halobacterium from R. Bonneau and N. Baliga (44 arrays). See Table S4 for lists of
individual experiments, including references, as well as analysis methods. To measure the similarity of the

expression patterns of pairs of adjacent genes, we use the Pearson correlation (r) of normalized log-ratios.

Overview of the unsupervised method

This section describes the key ideas behind the method (see Fig. 1 for an outline). To predict whether
a pair of adjacent genes on the same strand is within an operon, the method examines (i) the distance
between them in base pairs, (ii) several comparative genomics features, such as the extent to which this
potential operon is conserved in other genomes, and (iii) the similarity of their codon adaptation index
(CAI (12)). The Features section (below) describes how we compute these features, why we used this set
of features, and how we estimate likelihood ratios from features and training data. See Sup. Note 1 for
mathematical details.

The unsupervised method relies on a key assumption, which we justify in the Results: the distribution
of values of the comparative genomics features is the same for non-operon pairs (on the same strand) and

for opposing-strand pairs. The method also requires an estimate of the total number of operons or operon



pairs in the genome, which is described in the next section.

The first step of the method is to make preliminary predictions using the comparative genomics features.
We use adjacent pairs on opposing strands of DNA as a “true negative” set. By assumption, these have
the same distributions as non-operon pairs. For each genome, we train a classifier to distinguish this “true
negative” set from the adjacent same-strand pairs, which are a mixture of operon and non-operon pairs.
This classifier converts the comparative genomics features into likelihood ratios of the pair being from
the “mixture” set versus the “true negative” set. From the estimated number of operons, we know the
proportion of true positives in the mixture set, so we can convert these likelihood ratios into the likelihood
of each same-strand pair being in an operon or not. We also use a threshold on this likelihood to make
preliminary predictions of whether same-strand pairs are within operons.

We train a genome-specific distance model from these preliminary predictions together with an estimate
of their error rates, which can be derived from our assumption. The false positive rate — the error rate
on same-strand non-operon pairs — equals the error rate on opposing-strand pairs (that is, the fraction of
opposing-strand pairs that would be predicted to be in operons). The false negative rate is implied by the
shortage of predicted operon pairs relative to expectations, which equals the estimated number of operon
pairs plus the number of false positives minus the number of predicted operon pairs.

We combine likelihood ratios of same-strand pairs being in an operon (or not) from comparative genomics,
from the genome-specific distance model, and from the proportion of same-strand pairs that are in operons,
using Bayes’ rule. This produces a second set of intermediate predictions, which we use to train a classifier
for our final feature, the similarity of CAI, giving a fourth set of likelihood ratios. We do not attempt to
estimate error rates at this step. Finally, we combine all four likelihood ratios, again using Bayes’ rule, to
give the probability of a pair being in an operon based on all the features. Our predicted operon pairs are
those that are more likely to be in an operon than not (p > 0.5).

For E. coli and B. subtilis, we compare these unsupervised predictions to supervised predictions based
on the same features, training the same classifier with experimentally known operon and non-operon pairs.

We measure the accuracy of the supervised predictions using 100-fold cross-validation.

The number of operons in strand-biased genomes

To estimate the number of operons in each genome, we extend “directon counting” to genomes with coding

strand bias. In genomes without coding strand bias, where genes are equally likely to be on the leading
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and lagging strands of DNA replication, non-operon pairs should be equally likely to be on the same strand
or not. Then there are twice as many operons (including single-gene transcripts) as runs of same-strand
pairs, or “directons” (7, 13).

Some genomes, including B. subtilis, have significantly more genes on the leading stand of replication.
This is probably to avoid collisions between RNA and DN A polymerases that would result if the polymerases
moved in opposite directions (14). In strand-biased genomes, we cannot simply use directon-counting, as
both members of a non-operon pair are likely to be on the same strand (the leading strand).

If we know the relative frequency of multi-gene operons on the two strands, however, then we can
correct for the strand bias. A simple model of strands and operons in strand-biased genomes has three
parameters: the proportion of leading-strand pairs that are in operons, the proportion of lagging-strand
pairs that are in operons, and the proportion of genes that are on the leading strand. We observe two
variables: the proportion of pairs that are on the same strand, and the proportion of genes on the leading
strand (estimated below). With three unknowns and two observables, we need one additional constraint
to solve for the proportion of same-strand pairs that are in operons. We assume that same-strand pairs on
either strand are equally likely to be operons (“strand-wise” estimate), or alternatively, that transcripts
assort between strands independently of their length (“strand-naive” estimate). We use the “strand-wise”
assumption for predictions (justified in the Results). For formulas, see Sup. Note 1.

We estimate strand bias in each genome by finding the minimum and maximum of the cumulative
strand bias of genes along the chromosome. These extrema usually approximate the origin and terminus of
replication, but other factors can also create coding strand bias. We estimate 74% of genes on the leading

strand for B. subtilis and 56% for E. coli, close to the values of 74% and 54% given by (14).

Features

For each pair of adjacent genes, we compute:
Several “gene neighbor” scores measuring how conserved the adjacent pair is
Whether the two genes have the same COG function class (15)
The distance between them (the length of the intergenic region of DNA)

The similarity of the codon adaptation index (CAI, (12)) for the two genes



For formulas and implementation details, see Sup. Note 1.

The gene neighbor method measures how often two genes are near each other across many genomes
(16, 17). We use putative orthologs from bidirectional best hits, and ask how often the genes have orthologs
that are within 5 kb. Previous workers threw out closely related genomes (17) or reduced sensitivity when
they were present (7). Instead, we cluster related genomes together (see Table S3) and compute several
scores over different sets of clusters. To get useful information from closely related genomes, we introduce
a penalty if both orthologs exist but are not within 5 kb.

We considered using phylogenetic profiles (18) as well, but found no benefit (see Results). The similarity
of textual annotations has been used to select a genome-specific distance threshold, but this threshold and
the underlying feature were used to aid functional annotation, and their effectiveness for operon prediction
was not directly tested (19). This feature and other precise measures of functional similarity (2) might
further improve the comparative predictions.

We use a codon adaptation-based feature (CAI) because genes in the same operon are often expressed
at similar levels. Similarity of codon usage is an informative feature for predicting operons in E. coli (5).

Given training sets with errors, we use each feature to classify adjacent pairs. Specifically, we estimate
log likelihood ratios from (i) a training set split into two classes, such as conserved and non-conserved
pairs, (ii) values of the feature for each pair in the training set, and (iii) error rates. We first transform
the feature into ranks. The likelihood ratio for a range of ranks (e.g., a bin in a histogram) is the ratio of
counts for the two classes within that range, corrected for the error rates and the unequal representation
of the two classes in the training set. To avoid overfitting, we use a generalization of pseudocounts within
each range, and smooth the log likelihood ratios across ranges by using local regression (Sup. Note 1).

The comparative genomics predictions use the gene neighbor scores and the similarity of COG function
class. The other features are sensitive to strandedness, and cannot be used until a later step of the method
where only same-strand pairs are being considered. As the comparative features are highly correlated,
we find the best-fitting linear combination of log likelihood ratios with logistic regression (glm in R,

http://www.r-project.org/) instead of using Bayes’ rule.



Results

Surprisingly few operons on the lagging strand

The unsupervised method requires a prior estimate of the number of operons in the genome. To estimate
this quantity for genomes with coding strand bias, we need to know the relative proportion of multi-
gene and single-gene transcripts on the leading and lagging strands. A reasonable null hypothesis is that
transcription units assort between the leading and lagging strands independently of their length. In this
case, non-operon pairs on the lagging strand should be rare: given a first transcript on the lagging strand,
the probability of the next transcript being on the lagging strand independently is low. Hence, same-strand
pairs on the lagging strand should be more likely to be in operons than pairs on the leading strand (for a
rigorous proof see Sup. Note 1). In B. subtilis, however, the distributions of intergenic distances for leading
and lagging (same-strand) pairs are remarkably similar (Kolmogorov-Smirnov D-statistic = 0.03, p = 0.71).
Furthermore, the proportion of pairs that are conserved within 5 kb in a distant genome is much higher on
the leading strand (33.3% vs. 16.1%, Fisher exact test p < 1071*). In general, strand-biased genomes show
no consistent difference between the distributions of distances for the two strands, and both strand-biased
and non-biased genomes show a strong preference for conserved gene neighbors on the leading strand (Fig.
2).

Our interpretation is that same-strand pairs on the lagging strand are about as likely to be in operons
as same-strand pairs on the leading strand, leading to the similarity in the distance distributions, whereas
highly conserved operons are selected to the leading strand in all genomes. This “strand-wise” hypothesis
gives better operon predictions than the “strand-naive” null hypothesis: (i) more accurate predictions in B.
subtilis, (ii) better distance models, and (iii) better agreement with E. coli-based estimates of the number
of operons. First, in B. subtilis, the strand-wise approach gives a higher estimate of the proportion of
same-strand pairs that are within operons — 0.517 vs. 0.413 — that leads to significantly better agreement
with both known operons and microarrays. The area under the operating curve (Fig. 3, middle panel)
is 0.888 for strand-wise and 0.864 for strand-naive (p = 2 - 107%, DeLong test (20)). This corresponds
to accuracy at the default threshold of 81.0% and 78.0%, respectively (computed from the mean of the
accuracy on known operon and non-operon pairs). The agreement with microarrays (Spearman correlation
of predicted p with microarray similarity r) is 0.461 and 0.433, respectively (p < 10710 from two-sided ¢-test

of correlation between rank(r) and the differences in rank(p)). Second, across 124 genomes the strand-



8

wise estimates leads to distance models more in accord with expectations from FE. coli and B. subtilis
(Fig. S6). Finally, strand-wise estimates of the number of operons agree better with estimates from E.
coli distance distributions (the method of (8)). The Spearman correlation with E. coli-based estimates
is 0.363 for strand-wise and 0.223 for strand-naive estimates (p = 0.04 from correlation test of ranked
differences). This poor agreement between our method and the E. coli-based method (see Fig. S8B) may

reflect biologically meaningful variation in the distance distributions of different genomes (9).

Non-operon pairs resemble opposing-strand pairs

The unsupervised method assumes that comparative genomics features will have the same distributions
for non-operon pairs as for opposing-strand pairs. We test the equivalent assertion that the distribution of
p-values from the comparative predictions will be the same, using putative non-operon pairs at the bound-
aries of known operons in E. coli or B. subtilis (see Methods). In E. coli, the distributions are quite similar
(Kolmogorov-Smirnov D-statistic = 0.12, p = 1.1-10~*), and many conserved putative non-operon pairs are
actually known to be co-transcribed (7). B. subtilis, however, shows a much larger difference (D-statistic
= 0.31, p = 8.0- 10 19), because of conserved non-operon pairs (Fig. S7). We checked the 19 non-operon
pairs that strongly disagreed with comparative predictions (those with predicted p > 0.9) against tran-
scription unit diagrams and Northern hybridizations at BSORF (http://bacillus.genome.ad.jp/bsorf.html).
Northerns were only available for three pairs (sul/folA, mmgE /yqiQ, and deoR/dra), and in all three cases,
there was a transcript containing both genes. Furthermore, in both FE. coli and B. subtilis, the cases where
unsupervised predictions disagree with known operons (in either direction) show similar and intermediate
levels of coexpression relative to the operon and non-operon pairs where both agree (Fig. 3). Thus, appar-
ent deviations from the assumption reflect the limitations of the set of known non-operon pairs, perhaps

due to alternative transcripts.

Comparison to supervised methods

In E. coli and B. subtilis, the unsupervised predictions are about as accurate as the supervised predictions,
and are competitive with previously published (supervised) predictions. The unsupervised method has
sensitivity and specificity at the default threshold (p > 0.5) of 88.3% and 79.9% in E. coli and 90.9%
and 71.0% in B. subtilis (for comparisons to published methods see Table S1). In E. coli, the area under

the operating curve (middle panel of Fig. 3) is 0.920, versus 0.919 for the supervised method (p = 0.34,
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DeLong test). In B.subtilis, the areas are 0.888 and 0.907, respectively (p = 0.02, DeLong test). In E.coli,

the agreement with microarrays (the Spearman correlation of predicted p with microarray similarity r) is
0.494, versus 0.499 for the supervised method (p = 0.19 from ranked difference correlations). In B. subtilis,
agreement is 0.461 and 0.489, respectively (p = 0.001). The unsupervised distance models are similar to the
supervised models (Fig. 3), and on known operons, unsupervised p-values are consistent with prediction

accuracy (data not shown).

Accuracy against microarray data

To test operon predictions more broadly, we compare the unsupervised predictions to microarray data
from six species. We test whether adjacent genes predicted to be in the same operon (or not) have similar
expression patterns as measured by the Pearson correlation (r). We also use the microarray data to estimate
the accuracy of those predictions and to test the genome-specific distance models.

In all six species, the unsupervised predictions correlate with the similarity of expression (Fig. 4). The
agreement of predictions with individual microarrays is roughly consistent across species (Fig. S10). The
method combines features effectively: combining comparative genomics with intergenic distance improves
accuracy over either measure alone, and the combined comparative predictions outperform the best single
comparative feature in five of the six species (Table S2). Similarity of codon adaptation has little impact
on the results (Table S2).

To estimate prediction accuracy, we model the distribution of microarray similarity for predicted operon
and non-operon pairs as mixtures of the true operon and non-operon distributions. To estimate the
distribution for true operon pairs, we assume that high-confidence predictions (pairs with predicted p >
0.95) are reliable. Unsupervised p-values are in agreement with the accuracy of predictions for known
operons in E. coli and B. subtilis (data not shown), and in all six species the average microarray similarity
(r) rises sharply as p approaches 1 (Fig. 4). To estimate the distribution for non-operon pairs, we once
again assume that non-operon pairs will look like opposing-strand pairs. We then estimate the proportion of
true operons within our predicted sets by fitting a mixture of densities, and rerun the estimates on subsets
of experimental conditions to get confidence intervals (see Fig. S9 for details). We compare these estimates
to the accuracy expected from the predicted p-values. The overall accuracy from microarrays (the average
of the false positive and false negative rates) is consistent with expectations in E. coli and C. trachomatis,

and slightly lower than expected in B. subtilis (79% £+ 1% vs. 84%), while there is insufficient data for
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reliable estimates in H. pylori or Halobacterium (Fig. S9). Although overall accuracy in Synechocystis is
consistent with expectations (72% £ 5% vs. 73%), this reflects the combination of a high false positive
rate and a low false negative rate.

Synechocystis has fewer operons than predicted. The microarray-based estimate of the proportion of
same-strand pairs that are in operons is 0.34 £ 0.06, compared to 0.48 from strand-wise or 0.49 from
“directon counting” (this genome has little coding strand bias). Synechocystis is known to have unusual
operons, with a very wide distribution of distances between conserved pairs (see (8, 9) and Fig. 5). It has
been proposed that errors in gene models, specifically the absence of T'T'G initiation codons in the predicted
gene starts, might create this discrepancy (8). This would not affect our estimate of the number of operons,
however, as it does not depend on intergenic distances. Furthermore, using other gene start predictions
does not change the distance distributions (data not shown; alternative gene models were computed with
CRITICA (21), which led to 5% TTG starts, or downloaded from CyanoBase, http://www.kazusa.or.jp
/cyano/). Pseudogenes or unannotated ORFs could also create large distances within conserved operons,
but Synechocystis contains very few intergenic regions with homology to annotated ORFs (Sup. Note 2).
Thus, both the wide distribution of distances between conserved pairs and the apparent surplus of same-
strand pairs that are not in operons remain a mystery. Nevertheless, both the unsupervised method and
the genome-specific distance model are effective for this organism (Fig. 4 and Table S2).

Microarrays confirm that distance models vary. In Halobacterium, pairs separated by relatively short
distances (25-50 bp) are unlikely to be conserved in a distant genome (12/190 = 6.3% vs. 173/1021
= 16.9% for other pairs, p < 107*, Fisher exact test), whereas in E. coli such pairs are as likely to
be conserved as other pairs (100/254 = 39.4% vs. 983/2751 = 35.7%, p=0.25). Thus, the genome-
specific distance model deviates significantly from the supervised E. coli model in its predictions. The
Halobacterium distance model shows better agreement with microarrays: the Spearman correlation of the
difference between binary predictions (using the default threshold of p > 0.5) with r is 0.08 (p = 0.008; for
the other five genomes p > 0.05). Similarly, in H. pylori, pairs separated by 50-100 bp are significantly less
likely to be conserved than in E. coli: 95% confidence intervals for odds ratios are 0.15 — 0.49 in H. pylori
and 0.50 — 0.80 in E. coli. Thus, pairs at this distance have lower probabilities of being operons according
to the genomic-specific distance model (Fig. 5). Microarray data suggests that these 143 pairs contain
few operons, while the corresponding pairs from FE. coli do contain operons. H. pylori pairs separated by

50-100 bp have the same distribution of r as do other predicted non-operons (Kolmogorov-Smirnov D-
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statistic = 0.06, p > 0.5), and a significantly different distribution from other predicted operons (D = 0.33,

p < 107 11). The corresponding tests in E. coli give D = 0.24 and 0.23, respectively.

Large numbers of operons in the e-Proteobacteria. It has been suggested that H. pylori and its relative
Campylobacter jejuni have few operons (22, 23). Our strand-wise method predicts that most same-strand
pairs in these genomes are in operons — 71% in H. pylori and 72% in C. jejuni, higher than for E. coli
or B. subtilis. Conserved same-strand pairs are separated by smaller distances in both genomes: the
Spearman correlations of p-values from comparative genomics with intergenic distance are —0.27 and —0.17,
respectively. The two species share large numbers of adjacent pairs, which are probably conserved ancestral
operons: 20.5% of same-strand adjacent pairs in H. pylori are conserved within 5 kb in C.jejuni, versus
only 3.4% of opposing-strand pairs (p < 10713, x? test). Finally, and most significantly, in microarray data
for H. pylori, predicted operon pairs have much greater similarity than predicted non-operon pairs (Fig.

4).

Predicted operons across 124 genomes

To test the predictions for 124 genomes, where microarray data is generally not available, we examine the
the internal consistency of the unsupervised method, the genome-specific distance models, and an internal
estimate of accuracy. The first step of the unsupervised method is to train comparative genomics features
to distinguish same-strand from opposing-strand pairs. The method achieves significant discrimination
between the two sets in all 124 genomes (Fig. S8A), and the extent of discrimination is strongly correlated
with the surplus of conserved same- vs. opposing-strand pairs (Spearman correlation = 0.59, p = 4.9-10713).
Combining multiple gene neighbor scores and adding COG functional classes improves the discrimination
significantly, but using phylogenetic profiles of gene co-occurrence in genomes does not (generalized analysis
of variance, Fig. S8D). Within same-strand pairs, the agreement of the comparative predictions with
distance-only predictions is greater than the agreement between raw gene neighbor scores and distances
for 112/124 genomes (Fig. S8C).

Most genome-specific distance models have the shape expected from FE. coli and B. subtilis, but E. coli
has particularly extreme values at very short and very high separations (Fig. 5). E. coli may have an
unusually strong correlation between intergenic distance and conserved proximity, or gene starts in other
genomes may simply be less accurate (e.g., (8)).

Pseudogenes in ancestral operons. The correlation between intergenic distance and conserved proximity
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might be weakened in some genomes by the disruption of genes within ancestral operons. For example, B.
anthracis str. Ames has an unusual distance model, while its relative B. subtilis has a typical model (Fig.
5). By examining pairs of adjacent genes whose intergenic regions have syntenic homology to annotated
genes in B. cereus (a close relative of B. anthracis), we estimate that 7% of same-strand pairs in B. anthracis
contain potential pseudogenes, remnants of truncated genes, or erroneous start predictions (Sup. Note 2).
B. anthracis also has 12 apparent pseudogenes within highly conserved operons, compared to none in B.
subtilis and two in F. coli. We examined two of these pseudogenes in B. anthracis str. A2012, and found
that the reading frames was also disrupted, so these are unlikely to be sequencing errors (Sup. Note 2).
As operons containing pseudogenes would likely be disrupted by polarity (rho-dependent termination or
mRNA decay), pseudogenes could also affect the estimated number of operons.

Accuracy in 124 genomes. The estimated accuracy, from the average difference between the p-values and
zero or one, ranges from 71% to 96%, with half of the values lying between 82% and 87% (Fig. S11). As
accuracy is strongly correlated with the surplus of conserved same- vs. opposing-strand pairs (Spearman

correlation 0.47, p=3 - 107%), accuracy may improve as more genomes are sequenced.

Conclusions

Interpreting the wealth of microbial sequence data requires unsupervised methods for statistical inference
and careful validation against experiment across diverse species. We demonstrate accurate unsupervised
prediction of operons by combining comparative genomics and genome-specific distance models. The
method is based on an assumption, which we validate against known operons, that the evolution of same-
strand pairs which are not in operons resembles that of opposing-strand pairs.

We use microarray data to show that unsupervised predictions are effective in phylogenetically diverse
prokaryotes, including the archaeon Halobacterium NRC-1, a Gram-positive (B. subtilis) with strong coding
strand bias, a member (H. pylori) of the e-proteobacteria, which have been described as having few operons
(22, 23), and Synechocystis PCC 683, which has unusual operons (8, 9). Furthermore, in E. coli and B.
subtilis, unsupervised predictions are about as accurate as supervised predictions.

It has been proposed that distributions of distances within operons across the prokaryotes are similar
to E. coli, and that this can be used to predict individual operons and to estimate the total number of

operons (8). Distance models from E. coli disagree significantly with patterns of conservation in H. pylori
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and Halobacterium, and microarray data for those two organisms confirms these differences. Estimates of
the number of operons from E. coli distance models do not agree with estimates from counting same-strand
pairs or “directons.”

As B. subtilis and other genomes with coding strand bias have similar distributions of distances between
same-strand pairs on the leading and lagging strands, we infer that same-strand pairs on both strands are
equally likely to be in operons. We use this observation to generalize “directon counting” to to genomes
with coding strand bias, and to improve our operon predictions. Coding strand bias is believed to reflect
avoidance of collisions between DNA and RNA polymerases (14). We speculate that there is a balance
between greater selection for multi-gene transcripts on the leading strand and a lower probability of adjacent
non-operon pairs forming on the lagging strand by chance. This selection could reflect more frequent
collisions between RNA and DNA polymerases on longer transcripts or higher expression levels of multi-
gene transcripts.

Our present method relies largely on conserved gene neighbors and on intergenic distance. We improve
the sensitivity of the gene neighbor method by handling distantly and closely related species separately and
by introducing a penalty if both orthologs are present but are not near each other. Phylogenetic profiles do
not provide statistically significant additional information after combining several gene neighbor scores and
considering whether COG functional classes match. One approach to identifying further features would be
to investigate the contents of the conserved but widely separated adjacent pairs found in some genomes,
such as the apparent pseudogenes in B. anthracis and the continuing mystery in Synechocystis. We also
suspect that comparative identification of the features that determine whether genes are co-transcribed,

such as conserved transcription initiation sites or rho-independent terminators, could be effective.
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Figure 2: Comparison of leading and lagging strands across 124 genomes. (A) Proportion of same-strand
pairs conserved in a distant genome. (B) Median distance between same-strand pairs. The leading strand
is on the z axes, the lagging strand is on the y axes, the dashed grey lines show = = y, and red triangles
indicate genomes with 60% or more of their genes on the leading strand.
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Microarray similarity (r) in E.coli K12 Microarray similarity (r) in B.subtilis

Figure 3: Effectiveness of unsupervised predictions in E. coli K12 (left) and B. subtilis (right). Top row:
Distance models (log likelihood ratios), both supervised and unsupervised, showing the smoothed models
used in our predictions (curves) and the raw log likelihood ratio for each range (horizontal lines). If the log
likelihood ratio is zero (indicated by the dashed horizontal line), then that value of distance is equally likely
for operon and non-operon pairs. Middle row: Accuracy on known operon and non-operon pairs as the
prediction threshold varies, also known as the receiver operating characteristic curve. The area under the
curve is the probability that a known operon pair will have a higher score than a known non-operon pair
if both pairs are chosen randomly. Bottom row: Distribution of microarray similarity (Pearson correlation
r) for pairs where unsupervised predictions agree or disagree with known operons.
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Figure 4: Agreement of predicted operons with microarray data for six species. Each panel shows the
distribution of microarray similarity (Pearson r) for predicted operon pairs (right of panel) and non-operon
pairs (left of panel). The cyan curve in the middle of each panel shows the smoothed average of r as a
function of the predicted probability of being in an operon (p) for all same-strand pairs. The histogram
at the bottom shows the distribution of p. We also report the Kolmogorov-Smirnov test of whether the
two distributions of r differ, and the accuracy of both predicted sets, as estimated from microarrays or
implied by the p-values (shown in parentheses). The accuracy estimates compare the kernel densities of
r for the predicted sets (black curves) to those for opposing-strand pairs (orange dashed curves, left) and
high-confidence predicted operon pairs (green dashed curves, right). The smoothed average of r vs. p is
estimated by local regression of r vs. rank(p).
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Figure 5: Unsupervised distance models (pgy) across 124 genomes. (If p; = .5, operon- and non-operon
pairs are equally likely to have that value of distance.) The boxes show quartiles and medians, whiskers
extend up to 1.5x the interquartile range from the box, and dots show outliers. Note the non-linear z axis.
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Supplementary Figure 6: Effect of the proportion of same-strand pairs that are in operons,
P(Operon|Same), on the distance model pg. The z-axis shows results when assuming that P(Operon|Same)
is the same on both strands (the “strand-wise” method used for predictions), and the y-axis shows results when
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Supplementary Figure 7: Direct tests of our assumption. (A) Distribution of p-values from our comparative
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for opposing-strand pairs, in E. coli K12 and in B. subtilis. (B and C) Distribution of microarray correlations for
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Supplementary Figure 8: Properties of unsupervised predictions across 124 genomes. (A) Ability to
distinguish same-strand and opposing-strand pairs using comparative features, assessed by Spearman correlation of
p-values with strandedness, vs. the difference in the proportion of same- and opposing-strand pairs conserved in at
least one distant genome. (B) Comparison of our “strand-wise” method for estimating the proportion of same-strand
pairs that are in operons, P(Operon|Same), to the E. coli-based estimate

. PGenome(d c (_20, 30]|Same)
Pg co1i(d € (—20,30]|Same)

P(Operon|Same) = .5 (Eq. 1)
proposed by Moreno-Hagelsieb and Collado-Vides (2002). (C) Spearman correlations for our across-cluster gene
neighbor score “GNScore” and intergenic distance, versus Spearman correlations for our comparative p-values and
our distance model (see Sup. Note 1 for a description of GNScore). (D) Contribution of various features to the ability
to distinguish same-strand and opposing-strand pairs using comparative features, across 124 genomes. We show the
p-values from generalized analysis of variance for our logistic regression, using variables in the order shown (GNMi-
nus, GNScore, GNWithin, COG function similarity, and similarity of phylogenetic profiles measured with mutual
information; phylogenetic profiles were not actually used for prediction as they do not contain further information).
The genomes where the within-cluster score GNWithin was not significantly helpful include 34 genomes (27% of
total) which do not have scores because they are in singleton clusters (see Table S3). In B the dashed line indicates
z = y; in C the dashed line indicates x = —y.
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Supplementary Figure 9: Estimates of the proportion of same-strand pairs that are in operons,
P(Operon|Same), and of the accuracy of our unsupervised predictions, based on microarrays. These
microarray-based estimates are compared to sequence-based estimates of P(Operon|Same) and to the accuracy
implied by the predicted p-values. “prior” — P(Operon|Same); “accT” — accuracy of predicted operon pairs;
“accF” — accuracy of predicted non-operon pairs.

For each genome, we model the distribution of microarray similarity (Pearson r) for true operon pairs by
using high-confidence predictions (p > .95), and model the distribution for non-operon pairs by using opposing-
strand pairs. We estimate P(Operon|Same) and both accuracies from a least-squares fit of the density of the
relevant set of pairs to a mixture of the two kernel densities for the modeled sets. We use a Gaussian kernel with the
default settings in R’s density function (see http://www.r-project.org/). Because the distribution of r is strongly
affected by the extent to which gene levels change, especially for operon pairs, and because genes in operons show
greater changes in some species, we split the data into the four quartiles of total change (3 log ratio for an arbitrary
member of the pair), and compute the density within each quartile. The model density is the average of the
within-quartile densities, weighted by the number of pairs in each quartile in the data being fitted. This re-weighting
improves the agreement with sequence-based estimates. The accuracies shown for experimentally known pairs are
calculated from the observed sensitivity and specificity and the estimated number of operons:

P(Operon|Same) - P(p > .5|Operon)
(Operon|Same) - P(p > .5|0Operon) + P(—Operon|Same) - P(p > .5|=Operon)

P(Operon|p > .5) = P (Eq. 2)

P(—=Operon|Same) - P(p < .5|=Operon)
(Operon|Same) - P(p < .5|0Operon) + P(=Operon|Same) - P(p < .5|=Operon)

P(=Operon|p < .5) = P (Eq. 3)

To test the reliability of these estimates, we run them with single microarray conditions removed (“jackknife”) or
with resampling with replacement (that is, creating a data set of the same size). For the jackknife, we remove entire
groups of experiments because microarrays in the same condition are often highly correlated (for conditions see
Table S4). 95% confidence intervals from the jackknife are from a t test after multiplying the variance by %,
where m is the number of conditions, to reflect the fact that the jackknife estimates are correlated as they mostly

use the same data.

The wide variance of the jackknife relative to resampling in all five genomes suggests that operons might be
more important to regulation in some conditions than others. The slightly but significantly lower accuracy relative
to the sequence-based predictions in B. subtilis may indicate a modest violation of either the assumptions used to
create our predictions or the assumptions used to estimate accuracy. As discussed in the main text, Synechocystis
has fewer operons than predicted. The wide confidence interval of the jackknife in H. pylori results from having
expression data for only two conditions. We do not have the raw data to run the jackknife for Halobacterium.
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Supplementary Figure 10: Agreement of unsupervised predictions with each individual microarray
experiment. We show the median absolute difference in normalized log-ratios for predicted operons and non-operon
pairs, using only pairs where at least one gene showed some change (| log,(ratio)| > 0.3). The four E. coli experiments
with high median differences for both sets measured absolute rather than relative levels of mRNA by using genomic
DNA as a control.
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Supplementary Figure 11: Estimated accuracy of unsupervised predictions across 124 genomes. The
accuracies are derived from the unsupervised method’s p-values, using only the genome sequences.
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Term ‘ Definition
GN Minus | surprisal-subtracted cluster-naive gene neighbor score
GN Score across-cluster gene neighbor score
GNW:ithin | within-cluster gene neighbor score
X combined gene neighbor & COG function features
d intergenic distance
CAI codon adaptation index
SCAT similarity of codon adaptation index
Operon same-strand (adjacent) within-operon pairs
=Operon same-strand (adjacent) non-operon pairs
Same all same-strand (adjacent) pairs
—Same opposing-strand (adjacent) pairs
High same-strand pairs with high values of P(Same|X)
Low same-strand pairs with low values of P(Same|X)
. . P(d]Operon)
Pd distance model: P(d|Operon)+P(d|~Operon)
pear CALmodel: piy— o8t ple s =operon
Leading a gene is on the leading strand
Lagging a gene is on the lagging strand
Leading; gene 1 is on the leading strand
Leading;s | two adjacent genes are on the leading strand
Lagging12 | two adjacent genes are on the lagging strand
NAA number of times an amino acid occurs in a gene
NCodon number of times a codon occurs in a gene
Dg likelihood ratio for a bin z of a feature
Pz maximum likelihood estimate of p,
Features

The gene neighbor scores rely on putative orthologs from bi-directional best BLASTp hits with >75%
coverage both ways. We assigned genes to COGs (Tatusov et al. 2001) via reverse position-specific BLAST
(Schaffer et al. 2001) against CDD (Marchler-Bauer et al. 2003) as well as using COG membership from
NCBI.

To compute our gene neighbor scores, we first cluster the genomes, so that genomes with conserved
non-operon pairs will be in the same cluster. We use the fraction of convergently transcribed pairs that
are conserved to estimate the distance between two genomes: we use only convergent pairs because a small
but significant fraction of divergent pairs are widely conserved, probably because they share a bidirec-
tional promoter. As operons are often shuffled (Itoh et al. 1999), we use a distance cutoff of 5 kilobases
between orthologs to define a conserved adjacent pair, rather than requiring that the orthologs are ad-
jacent. We ignore strandedness, as the first step of unsupervised operon prediction requires scores that
are not inherently lower for opposing-strand adjacent pairs. We use a somewhat arbitrary threshold of
P(Conserved|Convergent) < 5% to create clusters of similar genomes (any pair of genomes above the
threshold in either direction are put into the same cluster).

For each pair of adjacent genes ¢ and j in each genome G’ in cluster C’, we consider only other genomes
G in clusters C which contain predicted orthologs for both 4 and j. Let fg ¢ be the fraction of opposing-
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strand adjacent pairs in G that are conserved within 5 kb in G’. Our scores are:

GNScore = Z max (if |position(i € G) — position(j € G)| < 5kb then log else 0) (Eq. 4)

CAC! fe.c
oy . Ce . " . 1 1
GNWithin= ) <1f |position(i € G) — position(j € G)| < 5kb then log else —log 7)
GAG,C=C' JfeXel 1-foa
(Eq. 5)
1
GNMinus = ) (if |position(i € G) — position(j € G)| < 5kb then log else —log—+—
Gzer feXel I (e¥el
(Eq. 6)

GNAll = Z (if |position(¢ € G) — position(j € G)| < 5kb then log
Gq,G’

else O) (Eq. 7)
GG

GNScore is the across-cluster score, GNWithin is the within-cluster score (or 0 if no close relative is in our
database), GNMinus is a cluster-naive score which subtracts surprisal values, and GNAII is a naive score.
The first three scores were used in the comparative predictions (GNAIl is highly dependent on the other
three). As shown in Fig. S8D, which assesses the effectiveness of the first step of unsupervised predictions,
which is to distinguish same-strand and opposing-strand pairs, the scores contain statistically significant
independent information in most genomes. GNMinus is the best single predictor in 77 genomes, GNScore
is best in 26 genomes, and GNAII is best in 21 genomes (assessed by single-variable logistic regressions on
log likelihood ratios, analogous to the multivariate logistic regression used to make predictions). In E. coli,
which is within a large gamma-proteobacterial cluster of 26 genomes, rspeqrman(GN Score, Same) = 0.263
V8. TSpearman(GN AL, Same) = 0.200 (p < 10710 from ranked difference correlation).

To analyze pairs of genes by their COG function classes, we assigned pairs to three classes — both genes
have the same, meaningful COG function codes (not “R” or “S”); both genes have different yet meaningful
COG codes; or one or both genes do not match a characterized COG.

We also experimented with phylogenetic profiles (Pellegrini et al. 1999), otherwise known as phyletic
patterns. We first computed clusters of genomes with similar gene content (over 50% of convergent pairs
from one genome both having orthologs in the other), analogous to the clustering for the gene neighbor
scores. For each pair of adjacent genes, we computed the mutual information between the patterns of co-
occurrence of orthologs in the clusters. We converted these scores into log likelihood ratios using smoothed
histograms as for other features. Although these log likelihood ratios show a clear correlation with same-
strand vs. opposing-strand pairs (median p over 124 genomes of 1.6 - 10717), they did not contain further
information beyond the gene neighbor scores and COG function class (median p across 124 genomes of
0.48 in generalized analysis of variance, and best p of only 0.004 — see Fig. S8D), so we did not use them
to predict operons.

To calculate the codon adaptation index (Sharp and Li, 1987), we need a reference set for each genome.
We first compute a codon bias index

CBI = ECodon NCodon * log(nAA/nCodon)

Eq. 8
ZCodon NCodon ( )

and then a reference set of 500 COGs which show bias across many genomes. For each genome, we use
the most biased 100 genes with at least 300 amino acids among those COGs as our reference set. We then
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compute

(Eq. 9)

CAI = exp (ZC’odon NCodon * log(weight) )

ZCodon NCodon

where the weight is the reference set’s usage of that codon divided by the reference set’s usage of the “best”
codon for that amino acid. (The “best” codon is the one most frequently used in the reference set.)
To describe the CAI similarity of a pair of genes, we considered

scar = —(rank(CAIL) — rank(CAIL))? (Eq. 10)

and
scar = (rank(CAI) — mean(rank)) * (rank(C Aly) — mean(rank)) (Eq. 11)

Both measures show small, positive, and highly significant (p < 10~8) correlations with the ranked scores
from our predictions without CAI, in both FE. coli and B. subtilis, so we use the sum of the two scores as
our feature. Although in principle, calculating similarity from the full codon usage instead of from codon
adaptation (as in Bockhorst et al. 2003a) seems preferable, we did not find highly significant correlations
with that method (data not shown).

Estimating Log Likelihood Ratios for a Feature from a Training Set with Errors

We begin with (i) a training set into two classes, which we will call “1” and “0”, (ii) values of the feature for
each pair in the training set, and (iii) a priori error rates. The first step is to estimate the likelihood ratio
for a given bin, or range of values. There is a tradeoff between small bins, which are noisy, and large bins,
which assign a single likelihood ratio to values that are substantially different from each other. Our bins
for computing likelihood ratios from continuous variables contain 100-200 items (100 items given 2,000
values or less, 200 items per bin given 4,000 values or more, and interpolation in between), and overlapped
by 50-100 items. For COG function similarity, we just use the three values (same function class, different
function class, or unknown).
To estimate likelihood ratios for a given bin z, we define

p(z|1)

Pr=—— Eq. 12
p(all) + p(al0) (Fa- 12)
or, equivalently
Dz p(.’E|1)
= Eq. 13
1—py  p(z]0) ( )

This likelihood ratio is what we wish to estimate. Unlike the more obvious measure p(1|z), p, does not
depend on p(1), the overall probability of being in class “1”: we will eventually want to combine several
independent likelihood ratios, and furthermore, some of our training sets have a different proportion of “0”
and “1” pairs than the proportion of same-strand pairs that are in operons.

Given this bin z, we find the maximum likelihood estimate of p, given a prior

T(pz) < Pz - (1 — pg) (Eq. 14)

We need a prior because a uniform prior can lead to estimates below zero or above one, as well as excessive
sensitivity to noise. We use this form of prior (a specific Dirichlet) because it is equivalent to adding
“pseudocounts” to the observed counts if we have training data without errors (Sjolander et al. 1996), but
the choice of parameters (powers for the terms, equivalent to magnitude of the pseudocounts) is ad hoc
(those parameters are fixed, not estimated from the data). Given a relation between p(1|z) and p,, the
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prior m(py) X py - (1 — pg), the observed counts ni, and ng; within the bin, and the binomial likelihood
P(n1z, n0z|pz) o< p(1z)™* - (1 — p(1|z))"* (Eq. 15)

we can solve for the maximum likelihood value of p, numerically. In the simplest case of equal numbers of
“0” and “1” pairs in training data without errors, p, = p(1|z), and our prior gives a maximum likelihood
estimate for p, of

N nig + 1
=+ - Eq. 16
Pz e + 70w + 2 (Eq )
If the training set is not balanced,
p(1) - pa
p(llz) = Eq. 17
W) = o0 e+ @ P 0 p) (e 10
where we estimate p(1) from the counts over the entire training set:
n
1) = Eq. 18
(1) = (Eq. 18)

In the most complicated case of estimating distance models from “training” data with both positive and
negative errors (based on pairs of genes with high or low ranks from comparative genomics), we have the
form

p(llz) = % (Eq. 19)
where
a = P(High|Same) - P(~Operon|High) (Eq. 20)
b= P(High|Same) - (P(Operon|High) — P(~Operon|High)) (Eq. 21)
¢ = a+ P(Low|Same) - P(~Operon|Low) (Eq. 22)
d = b+ P(Low|Same) - (P(Operon|Low) — P(—~Operon|Low)) (Eq. 23)

Given a likelihood ratio for each bin, we interpolate between the overlapping bins (using ranks of scores,
not raw values). We then smooth the results by local regression on the log likelihood ratio log(lf’;m ) vs.
rank(z) as implemented in loess in R (see http://www.r-project.org/). In simulations, smoothing prevents
overfitting and increases accuracy to near theoretical limits (data not shown). The span parameter for
loess is @ = 1 for the comparative features, as we expect a monotonic distribution and a majority of the

gene neighbor scores can be identical (0), and the default setting of @ = .5 for distance and CAI models.

Predicting Operons

We first build a model to distinguish same-strand and opposing-strand pairs based on the gene neighbor
and COG function features. To combine these highly correlated features, we use logistic regression on the
log likelihood ratios (as implemented in R’s glm, see http://www.r-project.org/) to find the best-fitting
linear combination of the log likelihood ratios. This gives us P(Same|X), the probability that a pair is
on the same strand given the comparative features X. We formalize our key assumption, which is that
the distribution of scores for each comparative genomics feature is approximately the same for non-operon
pairs (on the same strand) and for opposing-strand pairs, as

P(X|-Operon) ~ P(X|~Same) (Eq. 24)
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and use a prior estimate P(Operon|Same) of the proportion of same-strand pairs that are operon pairs
(from our generalization of “directon” counting), giving

P(X|Same) = P(X|Operon) - P(Operon|Same) + P(X|-Same) - P(~Operon|Same) (Eq. 25)

o P(=Same) P(Same|X)

P(X|Operon) P(Same) * P(—Same|X)

- = (Eq. 26)
P(X|-Operon) P(Operon|Same)

— P(=Operon|Same)

We use the output of the logistic regression to split the same-strand pairs into likely operon (high-
probability) and non-operon (low-probability) pairs. We use the ranked scores and a cutoff chosen to give
approximately the correct number of predicted operons:

percentile (P(Same|X:)) > P(—Operon|Same) (Eq. 27)

We estimate the accuracy on both sides of this split from the number of same-strand pairs with low
P(X|Operon), the number of opposite-strand pairs with high P(X|Operon), and the prior:

P(High|~Same)
P(High|Same)

P(Operon|Same) — P(Operon|High) - P(High|Same)
P(Low|Same)

P(=Operon|High) =

- P(—Operon|Same) (Eq. 28)

P(Operon|Low) =

(Eq. 29)

In practice, the accuracy of the split is modest but sufficient: in E. coli, the split has 78.9% accuracy on
known operons and 74.2% accuracy on known non-operons, vs. predicted 85.0% and 64.0%. In B. subtilis,
the accuracy is 88.0% and 50.0% vs. predicted 79.1% and 73.9%.

We produce a distance model

pa  _ P(d|Operon)
1—pg P(d|=Operon)

from this “training” set. Intuitively, we wish to subtract some fraction of P(d|Low) from P(d|High),
and divide by the proportion subtracted out, because errors in our preliminary predictions will reduce the
difference between the two distributions. Actually doing a subtraction is undesirable because it can lead to
illegal estimates such as pg < 0 or pg > 1, even after smoothing. Instead, we produce a maximum likelihood
estimate of pg for each bin from our accuracy estimates — which imply a relation between p,; and %
— and a prior, and smooth the results. Similarly, we use the combination of the distance model and the
logistic regression to estimate a p-value for our CAl-derived score, but without the “subtraction” step, as
we no longer have an estimate of accuracy. (We introduce CAI here, instead of in the logistic regression,
because it shows strong strand bias in some genomes, and thus would violate our assumption.) Our final

predicted within-operon pairs are those where

(Eq. 30)

P(Operon\)?, d,scar) _ P(Operon|Same) P()?|Operon) Dd DCAI
P(=Operon|X,d,sca;) P(—Operon|Same) P(X|-Operon) 1 —pal —pcar

> (Eq. 31)

1
2

For our supervised predictions, we use smoothed histograms on the known operon and non-operon pairs
to generate likelihood ratios for each feature, logistic regression to combine the gene neighbor and COG
scores, and the standard formula
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P(ZOperon) 1 P(z;|Operon) (Eq. 32)

P(#|-Operon) = P(zi|-Operon)

to combine the results of the logistic regression with the distance and CAI similarity scores. We make
predictions for pairs from the training set with 100-fold cross-validation, and make predictions for other
pairs with the mean of the log likelihood ratios from these 100 models.

Assumption of conditional independence. Both the supervised and unsupervised methods use Bayes’ rule
to combine likelihood ratios from the gene neighbor method and from the distance model. This implicitly
assumes that the two features are conditionally independent (that is, that they are independent once we
know whether pair is within an operon or not). This is a standard machine learning assumption, known as
“naive Bayes,” and it is biologically plausible. We have tested the conditional independence assumption on
known operon and not-operon pairs from E. coli. There is no correlation between GNMinus and distance
within known pairs (Spearman r = —0.06, p = 0.13). There is a significant negative correlation within
the putative not-operon pairs (Spearman r = -0.26, p = 2.5 - 10~?), which we suspect is partly due to
the presence of operon pairs within that set. The correlation between GNMinus and distance within the
predicted non-operon set from our unsupervised method is weak (Spearman r = —0.07, p = 0.005).

The fact that the distance model is built from the gene neighbor method-based predictions does not
affect whether the likelihood ratios are conditionally independent. In fact, the mathematical derivation
given above of the process for building a genome-specific distance model assumes conditional independence.
As discussed in a previous section of this note, smoothing while estimating log-likelihood ratios prevents
overfitting, which might otherwise lead to a violation of conditional independence.

Estimating the Number of Operons

For genomes without strand bias, the number of transcription unit changes is twice the number of direction
changes (Ermolaeva et al. 2001; Cherry 2003), or, in our notation,

1 — P(Operon|Same) - P(Same) = 2 - P(~Same) (Eq. 33)
which gives
P(Operon|Same) = 2 ! (Eq. 34)
peron|Same) = P(Same) q.
which can equivalently be derived from the neutral assumption
1
P(Same|-Operon) = 3 (Eq. 35)

Our strand-naive model assumes that transcripts are randomly assorted between strands in a biased
manner:

P(Operon|Leading,) = P(Operon|Lagging: ) (Eq. 36)

Given a first gene on (say) the leading strand, the probability that the next gene is on the same strand is
P(Leadings|Leading,) = P(Operon|Leading,) + P(—~Operon|Leading,) - P(Leading) (Eq. 37)

where P(Leading) is the extent of strand bias. This gives

1 _ P(Leading)?+P(Lagging)?)
P(Same)

(P(Leading)? + P(Lagging)?)

P(Operon|Same) = T (Eq. 38)
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This “strand-neutral” model implies that pairs of genes on the lagging strand are more likely to be in
operons, as adjacent transcripts on the lagging strand are less likely to arise by chance:

P(Operon|Leading, )
P(Leadingy|Leading, )

P(Operon|Leadings, Leading;) =

P(Operon|Lagging;)
P(Laggings|Lagging:)

= P(Operon|Laggings, Lagging: ) (Eq. 39)

because this model assumes that the numerators are equal.
Our “strand-wise model” assumes that

P(Operon|Same, Leading,2) = P(Operon|Same, Lagging:2) = P(Operon|Same) (Eq. 40)
By the same reasoning as above this gives
P(Operon|Leading,) > P(Operon|Lagging ) (Eq. 41)
and we derive

P(Operon|Lagging:)

P(Operon|Same) = P(Laggings| Lagging,) (Eq. 42)

a - P(Operon|Lagging:)? + b - P(Operon|Lagging:) + ¢ =0 (Eq. 43)

. P(Leadz:ngz|Leadz:ngl) (Bq. 44)
P(Laggings|Lagging:)

b = —2- P(Leadingz|Leading: ) (Eq. 45)

¢ = P(Leadings|Leading:) + P(Laggings|Lagging;) — 1 (Eq. 46)
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Supplementary Note 2: Gene Starts and Potential Pseudogenes in B.
anthracis str. Ames

To investigate the underlying causes of the unusual distance model for B. anthracis str. Ames, we examined
both potential pseudogenes — intergenic regions with long stretches homologous to annotated ORFs — and
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potential gene truncations — intergenic regions homologous to the B. cereus ortholog of one of the adjacent
genes. These “pseudogenes” and “truncations” could reflect sequencing errors, errors in gene identification,
errors in gene start prediction, ORF's that remain functional despite frameshifts or premature stop codons,
as well as genuine disruption or truncation of a functioning ORF. The effect on our distance model, however,
will be the same in all cases.

We estimate that 7% of same-strand pairs in B. anthracis have intergenic distances that are affected by
one or both phenomena (259/3749), leading to significant numbers of conserved pairs with large gaps. In
theory, this should increase our distance model pg by 0.07 at large distances. The minimum value of our
distance model p; (which is attained at the highest distances) is .114 in B. anthracis, compared to .042 in
B. subtilis and .025 in E. coli K12. Thus, these truncations, pseudogenes, and erroneous start predictions
are a major factor in the differences in distance models.

We identified the best hit of each intergenic region to coding regions in our database of 124 genomes,
using BLASTn and an E-value cutoff of 107°. We examined putative pseudogenes by considering only
matches over 200 bases long, giving 175 pseudogenes in B. anthracis, 9 in B. subtilis, 89 in E. coli K12, and
12 in Synechocystis. (Note that this analysis does not consider the possibility that some annotated ORFs
are pseudogenes, as that would not affect our distance models.) All of these potential pseudogenes were
highly similar to annotated ORFs (at least 78% identity), and many matches were very long (median length
in B. anthracis of 733 bases, vs. 279 for the same set in E. coli). Most of the B. anthracis pseudogenes
had their best hits to B. cereus ORFs (159/175).

We identified potential pseudogenes within ancestral operons by selecting putative pseudogenes between
same-strand pairs that were conserved near each other in a distant genome (GN Score >0). This gave
12/108 same-strand pairs in B. anthracis, versus 0/4 in B. subtilis, 2/51 in E. coli, and 0/8 in Synechocystis.
For comparison, 24% of all same-strand pairs in B. anthracis are conserved in a distant genome (versus
30% in B. subtilis, 36% in E. coli, and 14% in Synechocystis).

The two most conserved B. anthracis operons containing putative pseudogenes both include a frame-
shifted, highly similar, positional homolog from B. cereus (>85% nucleotide identity). The pseudogenes are
not due to sequencing errors, as shown by comparing to the sequences for other strains at GenBank (e.g.
100% identity in strain A2012), and not annotated in the GenBank entry for the complete B. anthracis
str. Ames genome (NC_003997.3). The first pair is annotated in B. anthracis as an ABC transporter
permease and iron compound-binding protein, with the pseudogene’s homolog in B. cereus annotated as
2-aminoethylphosphonate transport ATP-binding protein, and the second pair is annotated in B. anthracis
as flagellar hook-associated protein and flagellar hook-associated F1iD, with the pseudogene’s homolog in
B. cereus annotated as Flagellar hook-associated protein 3.

We also identified potential gene truncations or errors in predicted gene starts in B. anthracis, by
analyzing the best hits (of any length) between same-strand pairs in B. anthracis that both had close
(>70% identity) homologs in B. cereus that were adjacent or had only one intervening gene. (We did not
use best hits because if a gene is severely truncated, the true ortholog might not have the highest BLAST
score). This left 192 same-strand pairs containing intergenic homology to an ORF (in any genome), of
which 166 were syntenic (the best hit of the intergenic region was to the adjacent or intervening ORF in
B. cereus). Of these, 87 were apparent truncations (only three of these were over 200 bases long), and
79 were apparent pseudogenes (58 of these were over 200 bases long). For the apparent gene truncations,
the homology was most often to the downstream gene. This suggests that problems with the gene start
predictions, rather than truncation of an ORF by the introduction of a stop codon, might be the underlying
cause. Almost all of the “truncations” and most of the “pseudogenes” were gap-free alignments to ORFs.

Our estimate of 259 same-strand pairs with intergenic regions disrupted in B. anthracis is based on the
“success rate” of 166/192 from the B. cereus synteny analysis multiplied by the total number of intergenic
regions with homology to ORFs that are between same-strand pairs (300).
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Supplementary Tables

Supplementary Table 1: Agreement of our unsupervised and supervised predictions with experimen-
tally identified operon and non-operon pairs in E. coli and B. subtilis. AOC is the area under the operating
curve shown in Figure 3, or the probability that an operon pair will have a better score than a non-operon pair if
both pairs are chosen at random. Default sensitivity (fraction of known operon pairs which are correctly predicted)
and specificity (fraction of known non-operon pairs which are correctly predicted) are computed with a threshold of
predicted p > 0.5, and maximum accuracy is the maximum over all possible thresholds of the average of sensitivity
and specificity. The unsupervised microarray-based predictions, which are shown only in this table, use a logistic
regression of the microarray data (rank of Pearson r, total intensity, and total absolute change of the pair, with
pairwise interactions) versus the usual unsupervised predictions (thresholded at 0.5).

For comparison, we show results from our supervised predictions, from Salgado et al. 2000 for E. coli (using distance
and Monica Riley’s functional classification, or just distance), from Sabatti et al. 2002 for E. coli (using correlation
in microarray data and/or distance as features, on a somewhat different training set), from Bockhorst et al. 2003b for
E. coli (distance-only or distance plus microarrays and further sequence-based features), from Moreno-Hagelsieb and
Collado-Vides 2002 for B. subtilis (using a distance model trained in E. coli), and from De Hoon et al. 2004 for B. sub-
tilis (using distance and/or microarray correlation, and a much larger unpublished training set). We do not show the
results of Bockhorst et al. 2003a because they report accuracy for predicting transcripts, not individual pairs of genes.

Measure AOC | Max. Acc. | Def. Sens. | Def. Spec.
E. coli
Unsupervised (Sequence-only) 0.920 0.852 0.883 0.799
Distance-only 0.886 0.829 0.794 0.857
Unsupervised with microarrays 0.925 0.863 0.890 0.817
Microarray-only 0.820 0.750 0.834 0.660
Supervised (Sequence-only) | 0.919 | 0.859 | 0.865 | 0.850
Salgado et al. 2000 - 0.87 - -
Distance-only - 0.82 - -
Sabatti et al. 2002 - 0.88 0.88 0.88
Distance-only - 0.83 0.84 0.82
Microarray-only - 0.76 0.82 0.70
Bockhorst et al. 2003b 0.929 - 0.78 0.90
Distance-only 0.915 - - -
B. subtilis
Unsupervised (Sequence-only) 0.888 0.815 0.909 0.710
Distance-only 0.882 0.863 0.825 0.863
Unsupervised with microarrays 0.885 0.844 0.922 0.727
Microarray-only 0.748 0.692 0.804 0.545
Supervised (Sequence-only) | 0.907 | 0.868 | 0877 | 0847
Moreno-Hagelsieb & Collado-Vides 2002 - 0.82 - -
De Hoon et al. 2004 - 0.884 0.888 0.879
Distance-only - 0.856 0.821 0.890
Microarray-only - 0.796 0.801 0.791

Supplementary Table 2: Agreement of predictions, based on various combinations of features or
distance models, with microarray data. “E. coli p;” means using the supervised E. coli distance model (com-
puted using all of the training pairs and shown in Fig. 3), either by itself or combined with comparative predictions.
“GNMinus” is a gene neighbor score with surprisal subtraction (see Sup. Note 1). “Relaxed assumption” predictions
are computed by assuming that 10% of same-strand non-operon pairs look like operon pairs, which in practice tends
to downplay the comparative features and put a higher weight on the distance model. A potential biological basis for
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this assumption is that ancestral operons might split into separate transcripts without being shuffled, but no overall
benefit is seen.

rs(m,r,) is the Spearman correlation of each measure m with the similarity of expression (Pearson r in microarray
data). This indicates whether the measure ranks pairs of genes appropriately. rg(m > .5,r,) is the Spearman corre-
lation coefficient on a thresholded measure (only considering whether m is above 0.5 or not). This indicates whether
the default threshold is effective. rs(m, poperon) is the Spearman correlation with unsupervised predictions using the
full set of the features. P(Operon|Same) is the proportion of same-strand pairs that are in operons. P(Same) is the
proportion of adjacent pairs that are on the same strand. P(Leading) is the coding strand bias, or the proportion of
genes estimated to be on the leading strand. npqirs is the number of same-strand pairs for which a value of expression
similarity (Pearson r) is available.

E. coli K12: P(Operon|Same) = 0.57, P(Same) = 0.70, P(Leading) = 0.56, Npeirs = 2838/3005

Measure (m) rs(m,ry) | rs(m > .5,7.) | rs(m, poperon)
Untrained 0.494 0.421 1.000
Logistic regression 0.406 0.345 0.768
GNMinus 0.375 - 0.702
Distance-only 0.401 0.394 0.873
E.coli pq 0.387 0.396 0.837

Raw Sep. 0.384 - 0.808
without CAI 0.489 0.422 0.993
E.coli pq 0.497 0.429 0.977

relaxed assumption 0.483 0.418 0.995

B. subtilis: P(Operon|Same) = 0.52, P(Same) = 0.73, P(Leading) = 0.74, npairs = 2278/3020

Measure (m) rs(m,r,) | rs(m > .5,7.) | rs(m,poperon)
Untrained 0.461 0.392 1.000
Logistic regression 0.335 0.284 0.840
GNMinus 0.315 - 0.775
Distance-only 0.420 0.429 0.733
E.coli pq 0.423 0.427 0.729

Raw Sep. 0.423 - 0.727
without CAI 0.456 0.386 0.993
E.coli pq4 0.471 0.434 0.981

relaxed assumption 0.470 0.397 0.994

H. pylori: P(Operon|Same) = 0.70, P(Same) = 0.78, P(Leading) = 0.60, npairs = 1194/1226

Measure (m) rs(m,ry) | rs(m > .5,7.) | rs(m, poperon)
Untrained 0.343 0.308 1.000
Logistic regression 0.231 - 0.669
GNMinus 0.177 - 0.426
Distance-only 0.275 0.328 0.882
E.coli pq4 0.271 0.307 0.746

Raw Sep. 0.270 - 0.704
without CAI 0.345 0.312 0.993
E.coli pq 0.349 0.262 0.938

relaxed assumption 0.338 0.267 0.998

C. trachomatis: P(Operon|Same) = 0.60, P(Same) = 0.72, P(Leading) = 0.57, npqirs = 615/641
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Measure (m) rs(m,ry) | rs(m > .5,7.) | rs(m,poperon)
Untrained 0.303 0.289 1.000
Logistic regression 0.167 0.0965 0.804
GNMinus 0.192 - 0.751
Distance-only 0.260 0.309 0.750
E.coli pq 0.278 0.310 0.740

Raw Sep. 0.267 - 0.740
without CAI 0.305 0.292 0.998
E.coli pq 0.309 0.283 0.981

relaxed assumption 0.305 0.315 0.995

Synechocystis PCC 6803 P(Operon|Same) = 0.48, P(Same) = 0.66, P(Leading) = 0.53, npqeirs = 1947/2093

Measure (m) rs(m,ry.) | rs(m > .5,7.) | rs(Mm, poperon)
Untrained 0.268 0.232 1.000
Logistic regression 0.222 0.233 0.697
GNMinus 0.218 - 0.626
Distance-only 0.159 0.116 0.716
E.coli pqg 0.170 0.118 0.629

Raw Sep. 0.171 - 0.631
without CAI 0.267 0.232 0.985
E.coli pq4 0.259 0.225 0.849

relaxed assumption 0.265 0.240 0.997

Halobacterium NRC-1: P(Operon|Same) = 0.28, P(Same) = 0.58, P(Leading) = 0.53, npairs = 1114/1211

Measure (m) rs(m,ry,) | rs(m > .5,r,) | rs(m,poperon)
Untrained 0.215 0.190 1.000
Logistic regression 0.155 0.208 0.672
GNMinus 0.150 - 0.332
Distance-only 0.198 0.210 0.817
E.coli pq4 0.189 0.127 0.729

Raw Sep. 0.191 - 0.720
without CAI 0.221 0.181 0.977
E.coli pq 0.219 0.226 0.913

relaxed assumption 0.215 0.179 0.996

Supplementary Table 3: Genomes included in the analyses. We show the name of the genome; its NCBI
taxonomy identifier; the source from which we obtained the genome sequence; the clustering of genomes into related
groups with conserved gene order, showing the the genus of a member of the cluster and the cluster size, if the genome
was placed in a cluster, or a dash if the genome was in a cluster by itself; the proportion P(Same) of adjacent pairs
that are on the same strand; the strand-wise estimate P(Operon|Same) of the proportion of same-strand pairs
that are in operons; and the number of same-strand adjacent pairs. The source includes a “*” if we generated
gene models ourselves with CRITICA (Badger and Olsen 1999) rather than obtaining them with the sequence.
NCBI - http://www.ncbi.nlm.nih.gov/genomes/ MICROBES/Complete.html; TIGR — http://www.tigr.org; JGI -

http://www.jgi.doe.gov/.



Name TaxId | Source | Cluster | P(Same) | P(Operon|Same) | nsame
Aeropyrum pernix 56636 | NCBI - 0.568 0.233 1046
Agrobacterium tumefaciens C58 181661 | NCBI Bruce7 0.694 0.548 3159
Agrobacterium tumefaciens C58 (UW) 180835 | NCBI Bruce7? 0.678 0.514 3158
Archaeoglobus fulgidus 2234 | NCBI - 0.705 0.577 1706
Bacillus anthracis str. Ames 198094 | NCBI Bacil9 0.706 0.417 3749
Bacillus cereus ATCC 14579 226900 | NCBI Bacil9 0.713 0.431 3734
Bacillus halodurans 86665 | NCBI Bacil9 0.757 0.533 3076
Bacillus subtilis 1423 | NCBI Bacil9 0.734 0.517 3020
Bacteroides thetaiotaomicron VPI-5482 | 226186 | NCBI - 0.758 0.672 3622
Bifidobacterium longum NCC2705 206672 NCBI - 0.691 0.506 1195
Borrelia burgdorferi B31 224326 | NCBI - 0.729 0.581 620
Bradyrhizobium japonicum 375 | NCBI Bruce7 0.672 0.502 5593
Brucella melitensis 29459 | NCBI Bruce7? 0.696 0.542 2226
Brucella suis 1330 204722 | NCBI Bruce7? 0.670 0.489 2188
Buchnera aphidicola str. APS 107806 | NCBI | Wiggll9 0.741 0.626 418
Buchnera aphidicola str. Bp 224915 | NCBI | Wiggll9 0.722 0.584 364
Buchnera aphidicola str. Sg 198804 | NCBI | Wiggll9 0.721 0.581 393
Campylobacter jejuni 197 | NCBI - 0.789 0.717 1290
Caulobacter crescentus CB15 190650 | NCBI - 0.654 0.461 2445
Chlamydia muridarum 83560 | NCBI | Chlam6 0.706 0.575 638
Chlamydia trachomatis 813 | NCBI Chlam6 0.716 0.597 641
Chlamydophila caviae GPIC 227941 | NCBI | Chlam6 0.703 0.566 702
Chlamydophila pneumoniae AR39 115711 NCBI Chlam6 0.725 0.610 806
Chlamydophila pneumoniae CWL029 115713 | NCBI | Chlam6 0.717 0.597 756
Chlamydophila pneumoniae J138 138677 | NCBI Chlam6 0.721 0.605 771
Chlorobium tepidum TLS 194439 | NCBI - 0.676 0.507 1522
Clostridium acetobutylicum 1488 | NCBI Clost3 0.774 0.559 2842
Clostridium perfringens 1502 | NCBI Clost3 0.770 0.421 2048
Clostridium tetani E88 212717 | NCBI Clost3 0.776 0.517 1841
Corynebacterium efficiens YS-314 196164 | NCBI | Mycob5 0.645 0.421 1902
Corynebacterium glutamicum 196627 | NCBI Mycob5 0.674 0.497 2017
Coxiella burnetii RSA 493 227377 | NCBI - 0.678 0.500 1363
Deinococcus radiodurans 1299 | NCBI - 0.665 0.489 1993
Desulfovibrio vulgaris 881 | TIGR - 0.689 0.546 2431
Enterococcus faecalis V583 226185 NCBI - 0.790 0.580 2459
Escherichia coli CFT073 199310 | NCBI | Wiggll9 0.646 0.445 3475
Escherichia coli K12 83333 NCBI Wiggl19 0.702 0.570 3005
Escherichia coli O157:H7 83334 | NCBI | Wiggll9 0.735 0.628 3941
Escherichia coli O157:H7 EDL933 155864 | NCBI | Wiggll9 0.727 0.613 3868
Fusobacterium nucleatum, ATCC25586 | 190304 | NCBI - 0.806 0.754 1667
Haemophilus influenzae Rd KW20 71421 | NCBI - 0.733 0.628 1256
Halobacterium sp. NRC-1 64091 NCBI - 0.584 0.284 1211
Helicobacter pylori 26695 85962 | NCBI Helic2 0.778 0.705 1226
Helicobacter pylori J99 85963 | NCBI Helic2 0.780 0.712 1163
Lactobacillus plantarum WCFS1 220668 | NCBI - 0.740 0.541 2227
Lactococcus lactis subsp. lactis 1360 NCBI - 0.808 0.632 1831
Leptospira interrogans, 56601 189518 | NCBI - 0.656 0.459 3099
Listeria innocua 1642 | NCBI Liste2 0.805 0.632 2388
Listeria monocytogenes EGD-e 169963 | NCBI Liste2 0.788 0.606 2244
Mesorhizobium loti 381 | NCBI Bruce? 0.662 0.483 4464
Methanocaldococcus jannaschii 2190 | NCBI - 0.707 0.580 1223
Methanopyrus kandleri AV19 190192 NCBI - 0.663 0.482 1119
Methanosarcina acetivorans C2A 188937 | NCBI Metha2 0.667 0.500 3030
Methanosarcina mazei Goel 192952 | NCBI Metha2 0.683 0.532 2303
Methanothermobacter thermautotroph. | 187420 | NCBI - 0.748 0.655 1401
Mycobacterium leprae 1769 | NCBI Mycob5 0.688 0.484 1105
Mycobacterium tuberculosis CDC1551 83331 NCBI Mycob5 0.648 0.435 2715
Mycobacterium tuberculosis H37Rv 83332 | NCBI | Mycob5 0.668 0.484 2625
Mycoplasma gallisepticum R 233150 | NCBI | Mycop3 0.835 0.701 606
Mycoplasma genitalium 2097 | NCBI | Mycop3 0.839 0.705 406
Mycoplasma penetrans 28227 | NCBI - 0.801 0.591 831
Mycoplasma pneumoniae 2104 | NCBI Mycop3 0.820 0.678 565
Mycoplasma pulmonis 2107 | NCBI - 0.757 0.650 592
Neisseria meningitidis MC58 122586 | NCBI Neiss2 0.736 0.636 1531
Neisseria meningitidis 72491 122587 | NCBI Neiss2 0.737 0.638 1521
Nitrosomonas europaea ATCC 19718 228410 | NCBI - 0.746 0.652 1837
Nostoc sp. PCC 7120 103690 | NCBI - 0.634 0.420 3402
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Name TaxId | Source | Cluster | P(Same) | P(Operon|Same) | nsame
Oceanobacillus iheyensis 182710 | NCBI Bacil9 0.752 0.551 2632
Pasteurella multocida 747 | NCBI - 0.727 0.613 1465
Pseudomonas aeruginosa PAO1 208964 | NCBI Pseud3 0.706 0.575 3929
Pseudomonas putida KT2440 160488 | NCBI Pseud3 0.684 0.533 3662
Pseudomonas syringae 223283 | NCBI Pseud3 0.691 0.550 3783
Pyrobaculum aerophilum 13773 | NCBI - 0.634 0.417 1651
Pyrococcus abyssi 29292 | NCBI Pyroc3 0.689 0.540 1219
Pyrococcus furiosus DSM 3638 186497 | NCBI Pyroc3 0.690 0.545 1425
Pyrococcus horikoshii 53953 | NCBI Pyroc3 0.635 0.398 1143
Ralstonia solanacearum 305 NCBI - 0.728 0.609 2506
Rickettsia conorii 781 | NCBI Ricke2 0.769 0.679 1056
Rickettsia prowazekii 782 | NCBI Ricke2 0.751 0.648 627
Salmonella enterica, Typhi 90370 | NCBI | Wiggll9 0.721 0.597 3169
Salmonella enterica, Typhi Ty2 209261 | NCBI | Wiggll9 0.720 0.596 3111
Salmonella typhimurium LT2 99287 | NCBI | Wiggll9 0.708 0.573 3153
Shewanella oneidensis MR-1 211586 | NCBI | Wiggll9 0.685 0.530 2962
Shigella flexneri 2a str. 2457T 198215 | NCBI | Wiggll9 0.692 0.548 2816
Shigella flexneri 2a str. 301 198214 | NCBI | Wiggll9 0.691 0.548 2888
Sinorhizobium meliloti 382 NCBI Bruce7 0.687 0.537 2295
Staphylococcus aureus, Mu50 158878 | NCBI Bacil9 0.755 0.573 2048
Staphylococcus aureus, MW2 196620 | NCBI Bacil9 0.752 0.543 1980
Staphylococcus aureus, N315 158879 | NCBI Bacil9 0.747 0.548 1938
Staphylococcus epidermidis 176280 NCBI Bacil9 0.721 0.481 1743
Streptococcus agalactiae 2603V /R 208435 NCBI Strep7 0.812 0.647 1724
Streptococcus agalactiae NEM316 211110 | NCBI Strep7 0.827 0.669 1732
Streptococcus mutans UA159 210007 | NCBI Strep7 0.806 0.632 1580
Streptococcus pneumoniae R6 171101 NCBI Strep2 0.808 0.657 1651
Streptococcus pneumoniae TIGR4 170187 NCBI Strep2 0.799 0.614 1674
Streptococcus pyogenes M1 GAS 160490 | NCBI Strep7 0.810 0.645 1375
Streptococcus pyogenes MGAS315 198466 | NCBI Strep7 0.819 0.653 1527
Streptococcus pyogenes MGAS8232 186103 | NCBI Strep7 0.805 0.625 1485
Streptococcus pyogenes SSI-1 193567 | NCBI Strep7 0.814 0.643 1515
Streptomyces avermitilis MA-4680 227882 | NCBI Troph4 0.647 0.442 4903
Streptomyces coelicolor A3(2) 100226 | NCBI | Troph4 0.635 0.415 4772
Sulfolobus solfataricus 2287 | NCBI Sulfo2 0.633 0.414 1885
Sulfolobus tokodaii 111955 | NCBI Sulfo2 0.607 0.350 1714
Synechococcus sp. WH 8102 84588 JGI* - 0.642 0.438 1341
Synechocystis sp. PCC 6803 1148 | NCBI - 0.661 0.485 2093
Thermoanaerobacter tengcongensis 119072 | NCBI - 0.845 0.629 2186
Thermoplasma acidophilum 2303 | NCBI | Therm2 0.633 0.392 938
Thermoplasma volcanium 50339 | NCBI | Therm2 0.638 0.422 957
Thermosynechococcus elongatus BP-1 197221 NCBI - 0.643 0.442 1591
Thermotoga maritima 2336 | NCBI - 0.800 0.745 1486
Treponema pallidum 160 | NCBI - 0.743 0.617 770
Tropheryma whipplei str. Twist 203267 | NCBI Troph4 0.752 0.573 608
Tropheryma whipplei TWO08/27 218496 NCBI Troph4 0.762 0.589 597
Ureaplasma urealyticum 2130 | NCBI - 0.818 0.741 502
Vibrio cholerae 666 | NCBI | Wiggll9 0.670 0.485 2571
Vibrio parahaemolyticus RIMD 2210633 | 223926 | NCBI | Wiggll9 0.666 0.478 3218
Vibrio vulnificus CMCP6 216895 | NCBI | Wiggll9 0.678 0.505 3075
Wigglesworthia glossinidia 36870 | NCBI | Wiggll9 0.700 0.551 458
Xanthomonas axonopodis 190486 | NCBI Xanth4 0.707 0.577 3048
Xanthomonas campestris 190485 | NCBI Xanth4 0.707 0.577 2957
Xylella fastidiosa 9a5c 160492 | NCBI Xanth4 0.683 0.515 1890
Xylella fastidiosa Temeculal 183190 | NCBI Xanth4 0.723 0.602 1470
Yersinia pestis CO92 214092 | NCBI | Wiggll9 0.718 0.598 2789
Yersinia pestis KIM 187410 | NCBI | Wiggll9 0.667 0.486 2728

Supplementary Table 4: Microarray experiments included in the analysis. We only included experiments
which measured levels of mRNA (excluding, for example, genomic hybridizations to compare strains). The Pearson
correlation (r) for each pair of adjacent same-strand pairs was computed from normalized log-ratios. Because we
only consider adjacent pairs, the results should not be sensitive to non-random layouts of the arrays.

For E. coli K12, B. subtilis, and H. pylori, we obtained data from the Stanford Microarray Database (http://genome-
www.stanford.edu/microarray/), and we used only high-quality spots from each experiment (correlation between
channels of at least 0.6, and a normalized log-ratio is present in the database). Microarray data for H. pylori was
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for the Sydney strain 1 (SS1), whereas our database has sequence for the 26695 and J99 strains — for simplicity we
compared the SS1 correlations to our predictions for strain 26695. For C. trachomatis, we used averages of normalized
log-ratios from replicate experiments provided by Tracy Nicholson and Richard Stephens. Data for Synechocystis
was obtained from KEGG (http://www.genome.ad.jp/kegg/expression/). Raw data from Suzuki et al (2001) was
not available, so we used the normalized log-ratios provided. For the other Synechocystis experiments we normalized
the data by splitting each array into 16 sectors and performing local regression of the log-ratio versus the sum of
the logs (“M vs. A plots”) within each sector. In all five genomes, we averaged multiple spots for a given gene (if
available), subtracted out the mean log-ratio for each experiment before computing correlations, and required the
pair of genes to be present in at least 10 arrays to report results. For Halobacterium, correlations for all adjacent
pairs were provided by Richard Bonneau and Nitin Baliga.

For each experiment, the table shows: the source (database name and file name); our categorization of the
experiments into conditions (used for jackknife statistics, see Fig. S9); the number of same-strand adjacent pairs
where at least one gene changed (normalized |loga(ratio) > .3|); for those pairs, a measure of agreement with
our unsupervised predictions — the Spearman correlation between our p-value and the absolute difference between
normalized log-ratios (more negative shows stronger agreement); and the publication describing the experiment.



E.coli K12

Source Condition Npairs | Spearman(p,|d]) | Publication

SMD:1278 | Control 760 -0.165 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1285 | Control 505 -0.177 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1290 | Control 905 -0.115 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1292 | UV 459 -0.119 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1592 | Control 1415 -0.267 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1593 | Control 1190 -0.254 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1595 | Control 1387 -0.264 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1597 | Control 1296 -0.256 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1637 | Tryptophan 1300 -0.279 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1638 | Tryptophan 1881 -0.258 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1639 | Tryptophan 1288 -0.251 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1641 | Tryptophan 1172 -0.206 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1642 | Tryptophan 1295 -0.197 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1643 | TrpMutant 1519 -0.254 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1644 | TrpMutant 1953 -0.240 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1646 | TrpMutant 2009 -0.269 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1647 | TrpMutant 757 -0.074 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1649 | TrpMutant 1732 -0.329 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1650 | TrpMutant 1701 -0.157 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:1908 | Control 500 -0.170 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1909 | Control 601 -0.204 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1911 | lexA 441 -0.322 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1912 | lexA 438 -0.223 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1913 | lexA 544 -0.220 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1914 | lexA 406 -0.229 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:1915 | lexA 776 -0.217 Courcelle J et al.(2001) Genetics 158(1):41-64

SMD:5265 | Control 1529 -0.200 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5266 | Tryptophan 1850 -0.227 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5268 | IndoleAcrylate 1707 -0.256 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5272 | IndoleAcrylate 1706 -0.236 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5273 | IndoleAcrylate 1801 -0.206 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5277 | IndoleAcrylate 1792 -0.183 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5278 | IndoleAcrylate 1850 -0.260 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5281 | IndoleAcrylate 1956 -0.214 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5284 | IndoleAcrylate 2078 -0.257 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:5287 | IndoleAcrylate 1993 -0.243 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5
SMD:8377 | mRNAdecay 1988 -0.125 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8378 | mRNAdecay 1887 -0.152 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8379 | mRNAdecay 1918 -0.169 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8380 | mRNAdecay 1735 -0.144 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8536 | mRNAdecay 1369 -0.134 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8538 | mRNAdecay 1787 -0.192 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8540 | mRNAdecay 1858 -0.208 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8542 | mRNAdecay 2000 -0.197 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8582 | mRNAdecay 1589 -0.123 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8584 | mRNAdecay 1786 -0.211 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8586 | mRNAdecay 2032 -0.158 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:8589 | mRNAdecay 2008 -0.214 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:9395 | Control 724 -0.101 Khodursky AB et al.(2000) Proc Natl Acad Sci U S A 97:12170-5




Source Condition | npeirs | Spearman(p,|d|) | Publication

SMD:13838 | Control 1752 -0.280 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:13840 | rng 1028 -0.176 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:14829 | Leu 906 -0.169 Tani TH, et al. (2002) Proc Natl Acad Sci U S A 99(21):13471-6
SMD:14830 | Irp 825 -0.284 Tani TH, et al. (2002) Proc Natl Acad Sci U S A 99(21):13471-6
SMD:14831 | Irp 1112 -0.217 Tani TH, et al. (2002) Proc Natl Acad Sci U S A 99(21):13471-6
SMD:14832 | Irp 671 -0.152 Tani TH, et al. (2002) Proc Natl Acad Sci U S A 99(21):13471-6
SMD:15336 | Control 1623 -0.302 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15337 | Control 1221 -0.276 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15338 | Control 1153 -0.245 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15339 | rne 1655 -0.355 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15340 | rne 1967 -0.307 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15341 | Control 1846 -0.203 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15342 | Control 842 -0.332 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:15343 | rng 802 -0.209 Lee K, et al. (2002) Mol Microbiol 43(6):1445-56

SMD:25822 | Minimal 1306 -0.277 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:25825 | Minimal 1446 -0.264 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:25827 | Rich 563 -0.254 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:25831 | Rich 530 -0.280 Bernstein JA, et al. (2002) Proc Natl Acad Sci U S A 99(15):9697-702
SMD:32746 | rraA 1033 -0.134 Lee K, et al.(2003)Cell 114:623-634

SMD:32748 | rne 1716 -0.274 Lee K, et al.(2003)Cell 114:623-634

SMD:32749 | rne 1934 -0.282 Lee K, et al.(2003)Cell 114:623-634

SMD:32751 | rraA 1495 -0.335 Lee K, et al.(2003)Cell 114:623-634

SMD:32757 | rraA 1591 -0.117 Lee K, et al.(2003)Cell 114:623-634

SMD:32759 | rraA 1233 -0.160 Lee K, et al.(2003)Cell 114:623-634

SMD:32760 | rraA 1384 -0.136 Lee K, et al.(2003)Cell 114:623-634




B.subtilis

Source Condition | npgirs | Spearman(p,|d|) | Publication

SMD:22341 | Control 971 -0.325 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22342 | Control 710 -0.332 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22343 | Control 912 -0.264 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22344 | Control 1190 -0.230 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22345 | Control 1153 -0.230 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22346 | Control 1268 -0.252 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22347 | Control 1178 -0.262 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22348 | Control 1132 -0.274 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22349 | Control 750 -0.321 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22350 | Control 910 -0.271 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22351 | Control 884 -0.286 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22352 | Control 1381 -0.338 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22353 | Control 1476 -0.340 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22354 | Control 1549 -0.343 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22355 | Control 157 -0.219 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22356 | Peroxide 916 -0.154 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22357 | Peroxide 1202 -0.212 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22358 | Peroxide 1063 -0.259 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22359 | Peroxide 1261 -0.227 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22360 | Peroxide 966 -0.278 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22361 | Peroxide 907 -0.228 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22362 | Peroxide 633 -0.127 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22363 | Peroxide 1220 -0.280 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22364 | Peroxide 654 -0.285 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22365 | Control 481 -0.159 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22366 | Peroxide 965 -0.278 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22367 | Peroxide 859 -0.250 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22368 | Peroxide 951 -0.282 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22369 | Peroxide 1118 -0.267 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22370 | Peroxide 945 -0.354 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22371 | Peroxide 1185 -0.313 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22372 | Peroxide 628 -0.251 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22373 | Peroxide TAT -0.283 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22374 | Peroxide 890 -0.294 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22375 | Peroxide 1614 -0.297 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22376 | Peroxide 1609 -0.300 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22377 | Peroxide 1109 -0.352 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22588 | Control 276 -0.341 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22589 | Control 571 -0.298 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22590 | Control 521 -0.218 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22591 | Control 802 -0.319 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22592 | Control 542 -0.292 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22593 | Control 841 -0.194 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22594 | Control 437 -0.105 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22595 | Control 671 -0.097 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22596 | Control 1091 -0.184 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22597 | Control 371 -0.156 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22598 | Heat 1330 -0.341 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22599 | Heat 1755 -0.322 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
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Source Condition | npeirs | Spearman(p,|d|) | Publication

SMD:22600 | Heat 1555 -0.320 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22601 | Heat 1351 -0.343 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22602 | Heat 1574 -0.340 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22604 | Heat 1652 -0.334 Helmann JD, et al.(2001) J Bacteriol 183(24):7318-28
SMD:22937 | Peroxide 1275 -0.275 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22938 | Peroxide 1317 -0.262 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22939 | Peroxide 1229 -0.271 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22940 | Peroxide 1393 -0.328 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22942 | Peroxide 1373 -0.428 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22944 | Peroxide 1198 -0.409 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22945 | Peroxide 1269 -0.337 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22946 | Peroxide 1206 -0.351 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22947 | Control 743 -0.332 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22948 | Alcohol 1258 -0.281 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22950 | Alcohol 1162 -0.311 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22951 | Alcohol 1049 0.282 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22953 | Alcohol 1225 -0.354 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22954 | Alcohol 1318 -0.330 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22956 | Alcohol 1393 -0.369 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22958 | Alcohol 1401 -0.318 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22960 | Alcohol 1345 -0.315 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22961 | Alcohol 1298 -0.337 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:22963 | Control 1227 -0.237 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:25863 | perR 1559 -0.274 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:25864 | perR 1612 -0.264 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:25865 | perR 1566 -0.301 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:25866 | perR 1577 -0.301 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:25867 | perR 1543 -0.335 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53
SMD:25868 | perR 1190 -0.409 Helmann JD, et al.(2003) J Bacteriol 185(1):243-53

H.pylori 26695

Source Condition Npairs | Spearman(p, |6]) | Publication

SMD:14840 | GrowthPhase 811 -0.165 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14841 | GrowthPhase 833 -0.164 Thompson LIJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14842 | GrowthPhase 795 -0.190 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14843 | GrowthPhase 874 -0.147 Thompson LIJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14844 | GrowthPhase 820 -0.113 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14845 | GrowthPhase 825 -0.165 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14847 | GrowthPhase 793 -0.086 Thompson LIJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14849 | GrowthPhase 1039 -0.056 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:14850 | GrowthPhase 1006 -0.113 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15191 | GrowthPhase 994 -0.280 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15192 | GrowthPhase 914 -0.290 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15194 | GrowthPhase 978 -0.261 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15195 | GrowthPhase 1010 -0.288 Thompson LIJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15196 | GrowthPhase 995 -0.247 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15197 | GrowthPhase 1030 -0.198 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15198 | GrowthPhase 1081 -0.218 Thompson LIJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:15200 | GrowthPhase 1109 -0.202 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:21168 | pHlow 759 -0.182 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21169 | pHlow 878 -0.179 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21170 | pHlow 866 -0.210 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21171 | pHlow 934 -0.282 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21340 | pHlow 697 -0.112 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21341 | pHlow 948 -0.264 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21342 | pHlow 934 -0.268 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:21343 | pHlow 963 -0.280 Merrell DS, et al(2003) Infect Immun 71(6):3529-39
SMD:31625 | GrowthPhase 868 -0.377 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:31626 | GrowthPhase 891 -0.347 Thompson LIJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:31627 | GrowthPhase 876 -0.378 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:31628 | GrowthPhase 867 -0.373 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:31629 | GrowthPhase 986 -0.244 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
SMD:31630 | GrowthPhase 1077 -0.151 Thompson LJ, et al. (2003) Infect Immunity 71(5):2643-55
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Synechocystis PCC 6803

Source Condition | npairs | Spearman(p,|d|) | Publication

KEGG:ex0000022 sycrpl 234 -0.190 Yoshimura H (2002) Mol Microbiol 43(4)843
KEGG:ex0000023 sycrpl 236 -0.162 Yoshimura H (2002) Mol Microbiol 43(4)843
KEGG:ex0000024 sycrpl 288 -0.151 Yoshimura H (2002) Mol Microbiol 43(4)843
KEGG:ex0000030 Redox 428 -0.195 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000038 Redox 353 -0.244 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000044 sycrpl 244 -0.049 Yoshimura H (2002) Mol Microbiol 43(4)843
KEGG:ex0000049 Redox 752 -0.134 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000050 Redox 704 -0.161 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000051 Redox 706 -0.177 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000052 Redox 751 -0.233 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000140 Light 524 -0.130 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000141 Light 763 -0.158 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000142 Light 411 -0.161 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000143 Light 422 -0.236 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000144 Light 993 -0.140 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000145 Light 950 -0.092 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000146 Light 713 -0.083 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000147 Light 624 -0.151 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000148 Light 1005 -0.077 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000149 Light 1026 -0.130 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000152 Light 702 -0.189 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000153 Light 840 -0.165 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000154 Redox 730 -0.185 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000155 Redox 550 -0.136 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000156 Redox 608 -0.112 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000157 Redox 547 -0.177 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000158 Redox 333 -0.352 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000159 Redox 320 -0.349 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000160 Light 321 -0.169 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000161 Light 367 -0.189 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000162 Light 622 -0.193 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000163 Light 640 -0.164 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000164 Light 665 -0.218 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000165 Light 537 -0.135 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000166 Redox 1168 -0.160 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000167 Redox 1185 -0.145 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000168 Light 662 -0.170 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000169 Light 1039 -0.132 Hihara Y et al 2001. Plant Cell, Vol. 13, 793-806
KEGG:ex0000832 Redox 799 -0.253 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000833 Redox 869 -0.239 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000834 Redox 1196 -0.188 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000835 Redox 1228 -0.197 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000836 Redox 853 -0.255 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000837 Redox 959 -0.252 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000838 Redox 1063 -0.247 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:ex0000839 Redox 1276 -0.217 Hihara Y et al (2003) J Bacteriol 185(5):1719-25
KEGG:exn0000001 | Cold 1365 -0.062 Suzuki I et al 2001. Mol. Microbiology 401(1):235-244
KEGG:exn0000002 | hik33 1013 -0.075 Suzuki I et al 2001. Mol. Microbiology 401(1):235-244
KEGG:exn0000003 | Cold 1090 -0.027 Suzuki I et al 2001. Mol. Microbiology 401(1):235-244
C.trachomatis

Source Condition Npairs | Spearman(p,|d]) | Publication

TN & RS | IFNgamma2 210 -0.044 -

TN & RS | AlphaKetoGlutamate 490 -0.189 —

TN & RS | Glutamate 227 0.016 —

TN & RS | Heat 288 -0.278 -

TN & RS | Heat 158 -0.238 -

TN & RS | Iron 460 -0.156 -

TN & RS | Penicillin 330 -0.359 -

TN & RS | Growth 551 -0.191 Nicholson TL et al 2003 J Bact 185(10):3179-89
TN & RS | Growth 525 -0.253 Nicholson TL et al 2003 J Bact 185(10):3179-89
TN & RS | Growth 374 -0.176 Nicholson TL et al 2003 J Bact 185(10):3179-89
TN & RS | Growth 566 -0.251 Nicholson TL et al 2003 J Bact 185(10):3179-89
TN & RS | Tryptophan 307 -0.036 —

45



Halobacterium NRC-1

46

Source Condition Npairs | Spearman(p,|d]) | Publication

RN & NB | UV resistance (5 experiments) - - -

RN & NB | Light/dark response (3 experiments) - - -

RN & NB | bop/bat genetic perturbations (3 experiments) - - Baliga NS et al. (2002) PNAS 99:14913-8
RN & NB | day/night entrainment (33 experiments) - - —




